38 research outputs found

    Quantifying antibiotic use in paediatrics: a proposal for neonatal DDDs

    Get PDF
    The defined daily dose (DDD) as defined by the World Health Organization (WHO) has been the most frequently used unit of measurement to measure antibiotic use. However, measuring antibiotic use in paediatrics is a problem as the WHO DDD methodology is not applicable in children (aged >1 month) due to the large variation in body weight within this population. Based on the narrow range of body weights in the neonatal population, we therefore aimed to develop a set of neonatal DDDs for antibiotics. Eight well-respected (inter)national sources for dosage recommendations of antibiotics in children and neonates were consulted for the assumed maintenance dose of the ten most frequently used antibiotics in neonatal intensive care units in its main indication for neonates. A set of neonatal DDDs for ten commonly used antibiotics in neonates based on an assumed neonatal weight of 2 kg was proposed. Primarily in children DDDs are not applicable to quantify antibiotic use since there is large variation in body weight. In the neonatal population, however, based on its narrow range of body weights and when access to patient level data is not available, neonatal DDDs can be used as a unit of measurement

    Using a computerized provider order entry system to meet the unique prescribing needs of children: description of an advanced dosing model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well known that the information requirements necessary to safely treat children with therapeutic medications cannot be met with the same approaches used in adults. Over a 1-year period, Duke University Hospital engaged in the challenging task of enhancing an established computerized provider order entry (CPOE) system to address the unique medication dosing needs of pediatric patients.</p> <p>Methods</p> <p>An advanced dosing model (ADM) was designed to interact with our existing CPOE application to provide decision support enabling complex pediatric dose calculations based on chronological age, gestational age, weight, care area in the hospital, indication, and level of renal impairment. Given that weight is a critical component of medication dosing that may change over time, alerting logic was added to guard against erroneous entry or outdated weight information.</p> <p>Results</p> <p>Pediatric CPOE was deployed in a staggered fashion across 6 care areas over a 14-month period. Safeguards to prevent miskeyed values became important in allowing providers the flexibility to override the ADM logic if desired. Methods to guard against over- and under-dosing were added. The modular nature of our model allows us to easily add new dosing scenarios for specialized populations as the pediatric population and formulary change over time.</p> <p>Conclusions</p> <p>The medical needs of pediatric patients vary greatly from those of adults, and the information systems that support those needs require tailored approaches to design and implementation. When a single CPOE system is used for both adults and pediatrics, safeguards such as redirection and suppression must be used to protect children from inappropriate adult medication dosing content. Unlike other pediatric dosing systems, our model provides active dosing assistance and dosing process management, not just static dosing advice.</p

    A combination of ascorbic acid and α-tocopherol to test the effectiveness and safety in the fragile X syndrome: study protocol for a phase II, randomized, placebo-controlled trial

    Get PDF
    BACKGROUND: Fragile X syndrome (FXS) is an inherited neurodevelopmental condition characterised by behavioural, learning disabilities, phisical and neurological symptoms. In addition, an important degree of comorbidity with autism is also present. Considered a rare disorder affecting both genders, it first becomes apparent during childhood with displays of language delay and behavioural symptoms. Main aim: To show whether the combination of 10 mg/kg/day of ascorbic acid (vitamin C) and 10 mg/kg/day of α-tocopherol (vitamin E) reduces FXS symptoms among male patients ages 6 to 18 years compared to placebo treatment, as measured on the standardized rating scales at baseline, and after 12 and 24 weeks of treatment. Secondary aims: To assess the safety of the treatment. To describe behavioural and cognitive changes revealed by the Developmental Behaviour Checklist Short Form (DBC-P24) and the Wechsler Intelligence Scale for Children–Revised. To describe metabolic changes revealed by blood analysis. To measure treatment impact at home and in an academic environment. METHODS/DESIGN: A phase II randomized, double-blind pilot clinical trial. Scope: male children and adolescents diagnosed with FXS, in accordance with a standardized molecular biology test, who met all the inclusion criteria and none of the exclusion criteria. Instrumentation: clinical data, blood analysis, Wechsler Intelligence Scale for Children–Revised, Conners parent and teacher rating scale scores and the DBC-P24 results will be obtained at the baseline (t0). Follow up examinations will take place at 12 weeks (t1) and 24 weeks (t2) of treatment. DISCUSSION: A limited number of clinical trials have been carried out on children with FXS, but more are necessary as current treatment possibilities are insufficient and often provoke side effects. In the present study, we sought to overcome possible methodological problems by conducting a phase II pilot study in order to calculate the relevant statistical parameters and determine the safety of the proposed treatment. The results will provide evidence to improve hyperactivity control and reduce behavioural and learning problems using ascorbic acid (vitamin C) and α-tocopherol (vitamin E). The study protocol was approved by the Regional Government Committee for Clinical Trials in Andalusia and the Spanish agency for drugs and health products. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01329770 (29 March 2011
    corecore